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Introduction

Drug-target interaction (DTI) analysis plays a crucial role in drug discovery. Recent progress in
deep learning has led to advanced DTI models [1], enabling efficient screening of compounds and
aiding in drug repositioning [2] by uncovering new therapeutic uses for existing medications.
Our group has continuously refined the CGBVS (Chemical Genomics-Based Virtual Screening)
method for DTI prediction. Previously, we tested its accuracy on virtual orphan GPCR targets by
omitting ligand data during training [3]. We employed the same approach in this study but we
broaden the scope by also including kinases, ion channels and proteases.

Preparation and Validation of Virtual Orphan Predictive Models

In this study, we utilized chemogenomics-based virtual screening (CGBVS) [3] method to create
virtual orphan models. The general protocol is illustrated in Fig 1.

Figure 1. Process flowchart for this study. Red, dashed lines indicate removal of ligand data.

Targets of these models belong to 4 protein families (GPCR, kinases, ion channels and proteases)
and for each protein family we selected 60 protein targets from whose training dataset we omitted
ligand data. A total of 240 predictive models were created. Each model was used to screen a
compound dataset. Results from the screening were used to calculate AUROC and applicability
index. Information about the predictive models is shown in Table 1.

Table 1. Information about the predictive models used in this study

Target protein families: GPCR, Kinase, Ion channel, Protease
Source DB: ChEMBL rel. 33

Compound descriptors: alvaDesc ver. 2
Protein descriptors: Multiple Sequence Alignment (MSA)

Classifier: Support vector machines (SVM)
Activity cutoff: ≤10µM

Applicability Index

We considered the applicability index A(p i) of CGBVS to the virtual orphan target p i to be
proportional to the sum of the number of active ligands Nj of the neighboring proteins pj. So we
defined it as

A (p i) =
∑

j

w
(
KP

(
p i, pj

))
Nj. (1)

Here, w is a weight function whose argument is the value of the protein kernel function KP, and
its functional form is the sigmoid function

w(x) = 1
1 + exp (−α (x − r))

. (2)

The two parameters of the sigmoid function, α and r, are determined to maximize the Pearson’s
correlation coefficient between AUROC and log A. The AUROC is calculated using the procedure
described in a previous paper [3]. Bayesian optimization was used to perform the optimization of
the correlation coefficient.

Relationship Between Reference Virtual Orphan Targets and
Surrounding Proteins

Below are t-SNE (t-Distributed Stochastic Neighbor Embedding) representations of reference virtual
orphan targets with their surrounding proteins. Similarity scores between a selected hit compound
obtained via CGBVS and known ligands of the surrounding proteins are indicated in blue. The
ligand data information of the surrounding proteins propagates to the orphan target enabling the
prediction of potential ligands.
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Figure 2. t-SNE representation of the GPCR
5HT1A and its surrounding proteins.
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Figure 3. t-SNE representation of the protease
TRY1 and its surrounding proteins.

Correlation of AUROC and logA

Scatter plots showing correlation of AUROC and logA of selected GPCRs, kinases, ion channels
and proteases. GPCRs and proteases showed high correlation values followed by kinases with ion
channels showing the least correlation.
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Figure 4. GPCR
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Figure 5. Kinase
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Figure 6. Ion channel

Pearson's corr. = 0.8224 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4
logA

A
U

R
O

C

Figure 7. Protease

Orphan Targets with High Applicability Indices

We selected the proteins that have low number (0-10) of ligand data and exhibited high applicability
indices. We believe that potential ligands of these orphan targets have a high probability of being
predicted using the CGBVS method.

Table 2. List of orphan targets with possessing high applicability index

uid ligand count logA accession protein name protein family

GLP2R_HUMAN 0 3.88 O95838 Glucagon-like peptide 2 receptor GPCR
PTH2R_HUMAN 0 3.57 P49190 Parathyroid hormone 2 receptor GPCR
SCTR_HUMAN 0 3.47 P47872 Secretin receptor GPCR
ACTHR_HUMAN 0 3.33 Q01718 Adrenocorticotropic hormone receptor GPCR
NPBW2_HUMAN 0 3.19 P48146 Neuropeptides BW receptor type 2 GPCR
FPR3_HUMAN 0 3.08 P25089 N-formyl peptide receptor 3 GPCR
VIPR1_HUMAN 1 3.36 P32241 Vasoactive intestinal polypeptide receptor 1 GPCR
CDK20_HUMAN 9 3.66 Q8IZL9 Cyclin-dependent kinase 20 Kinase
CDK10_HUMAN 10 3.72 Q15131 Cyclin-dependent kinase 10 Kinase
PLM_HUMAN 0 4.41 O00168 Phospholemman Ionch channel
KCNE3_HUMAN 0 4.36 Q9Y6H6 Potassium voltage-gated channel subfamily E member 3 Ionch channel
KCNH6_HUMAN 0 4.35 Q9H252 Potassium voltage-gated channel subfamily H member 6 Ionch channel
KCNH7_HUMAN 0 4.34 Q9NS40 Potassium voltage-gated channel subfamily H member 7 Ionch channel
KCNE2_HUMAN 0 4.32 Q9Y6J6 Potassium voltage-gated channel subfamily E member 2 Ionch channel
TRY6_HUMAN 0 3.54 Q8NHM4 Putative trypsin-6 Protease
MMP27_HUMAN 0 3.32 Q9H306 Matrix metalloproteinase-27 Protease
CAN8_HUMAN 0 2.90 A6NHC0 Calpain-8 Protease
CAN11_HUMAN 0 2.82 Q9UMQ6 Calpain-11 Protease
CAN3_HUMAN 0 2.68 P20807 Calpain-3 Protease
NAPSA_HUMAN 0 2.51 O96009 Napsin-A Protease
FOH1B_HUMAN 0 2.51 Q9HBA9 Putative N-acetylated-alpha-linked acidic dipeptidase Protease
PRS29_HUMAN 0 2.48 A6NIE9 Putative serine protease 29 Protease
KLK15_HUMAN 0 2.45 Q9H2R5 Kallikrein-15 Protease
HTRA3_HUMAN 0 2.44 P83110 Serine protease HTRA3 Protease
MMP20_HUMAN 1 3.01 9 O60882 Matrix metalloproteinase-20 Protease
MMP24_HUMAN 1 2.73 Q9Y5R2 Matrix metalloproteinase-24 Protease
ECE2_HUMAN 3 2.50 P0DPD6 Endothelin-converting enzyme 2 Protease
TRYB2_HUMAN 8 2.84 P20231 Tryptase beta-2 Protease
CAN9_HUMAN 9 2.71 O14815 Calpain-9 Protease
KLK2_HUMAN 9 2.69 P20151 Kallikrein-2 Protease
Note: Due to space constraints, only a part of the ion channels and proteases are shown here.

Conclusions

The existence of ligand information for the surrounding proteins influences the prediction of
ligand for an orphan target.
High correlation values between AUROC and logA for GPCR, kinase, and protease models
suggest that the CGBVS technique is likely effective for predicting ligands of orphan targets in
these categories. Conversely, the low correlation for ion channel models indicates that CGBVS
may not be suitable for predicting ligands of orphan targets in this group.

References

[1] Heba Askr, Enas Elgeldawi, Heba Aboul Ella, Yaseen AMM Elshaier, Mamdouh M Gomaa, and Aboul Ella Hassanien. Deep learning in drug discovery: an integrative review and future challenges. Artificial Intelligence Review, 56(7):5975–6037, 2023.

[2] Lijun Cai, Jiaxin Chu, Junlin Xu, Yajie Meng, Changcheng Lu, Xianfang Tang, Guanfang Wang, Geng Tian, and Jialiang Yang. Machine learning for drug repositioning: Recent advances and challenges. Current Research in Chemical Biology, page 100042, 2023.

[3] Chisato Kanai, Enzo Kawasaki, Ryuta Murakami, Yusuke Morita, and Atsushi Yoshimori. Computational prediction of compound–protein interactions for orphan targets using cgbvs. Molecules, 26(17):5131, 2021.


